第1章 DMP用户画像项目介绍
1-1 关于这门课,你需要知道的 (08:34)
1-2 DMP项目的意义和课程的侧重点 (09:46)
1-3 DMP项目架构及各个模块介绍 (09:35)
1-4 项目技术选型及各组件版本 (04:30)
1-5 【知识点梳理】本章重难点总结
第2章 项目环境搭建
2-1 本章重点及学习计划 (01:59)
2-2 基于docker一键部署大数据开发环境 (12:34)
2-3 【项目文档】环境部署步骤
2-4 数据准备:表结构和数据导入Hive数仓 (16:06)
2-5 【项目文档】表结构和数据导入Hive数仓步骤
2-6 数据准备:Hive,ES,ClickHouse导入人群标签数据 (15:50)
2-7 【项目文档】Hive,ES,ClickHouse导入人群标签数据步骤
2-8 环境搭建和数据导入的常见问题及解决方案 (05:18)
2-9 【项目文档】 项目整体架构及整体流程
2-10 【项目文档】Hive、Hbase、ES、clickhouse表结构
2-11 Springboot+JdbcTemplate+druid整合Hive(上) (11:58)
2-12 Springboot+JdbcTemplate+druid整合Hive(下) (13:26)
2-13 Springboot+Mybatis+phoenix整合Hbase (30:48)
2-14 Springboot整合ClickHouse(上) (17:00)
2-15 Springboot整合ClickHouse(下) (06:32)
2-16 Spark+phoenix整合Hbase (19:53)
第3章 DMP和用户画像
3-1 本章重点及学习计划 (01:39)
3-2 用户画像是如何生成的 (05:34)
3-3 用户画像的标签维度 (04:12)
3-4 如何构建高质量的用户画像 (06:31)
3-5 用户画像和特征工程 (03:30)
3-6 DMP用户画像的正确使用场景 (04:49)
3-7 【知识点梳理】本章重难点总结
第4章 用户画像搭建之特征工程
4-1 本章重点及学习计划 (02:59)
4-2 特征工程流程 (06:08)
4-3 数值型数据的特征提取 (07:32)
4-4 文本型数据的特征提取 (07:48)
4-5 使用Spark实现中文分词+TF-IDF (17:34)
4-6 Spark基于TF-IDF+SVM实现电商商品评论情感提取(上) (15:32)
4-7 Spark基于TF-IDF+SVM实现电商商品评论情感提取(下) (13:57)
4-8 类别型和时间型数据的特征提取 (06:48)
4-9 构建新特征之特征交叉 (04:50)
4-10 基于FM的特征交叉 (10:22)
4-11 Spark实现基于FM的特征交叉 (41:32)
4-12 特征筛选之GBDT和xgboost (14:16)
4-13 Spark实现基于Xgboost的特征筛选(上) (19:56)
4-14 Spark实现基于Xgboost的特征筛选(下) (13:41)
4-15 特征监控方案设计 (05:27)
4-16 【知识点梳理】本章重难点总结
第5章 用户画像搭建之标签体系构建
5-1 本章重点及学习计划 (01:38)
5-2 电商行业的标签体系以及reachCTR曲线 (11:24)
5-3 用户行为标签的ES存储 (27:21)
5-4 基于TF-IDF的标签权重算法(上) (13:19)
5-5 基于TF-IDF的标签权重算法(中) (11:06)
5-6 基于TF-IDF的标签权重算法(下) (10:32)
5-7 时间衰减因子和用户偏好标签的计算(上) (18:35)
5-8 时间衰减因子和用户偏好标签的计算(下) (20:58)
5-9 ES构建Hbase二级索引对标签进行组合查询 (19:36)
5-10 商品标签与用户画像标签的匹配度 (04:10)
5-11 【知识点梳理】本章重难点总结
第6章 用户画像搭建之群体用户画像构建
6-1 本章重点及学习计划 (01:21)
6-2 朴素贝叶斯分类算法 (09:25)
6-3 使用Spark-ml实现基于朴素贝叶斯预测性别(上) (18:23)
6-4 使用Spark-ml实现基于朴素贝叶斯预测性别(中) (19:55)
6-5 使用Spark-ml实现基于朴素贝叶斯预测性别(下) (05:05)
6-6 基于RFM模型的用户价值划分及Spark代码(上) (06:03)
6-7 基于RFM模型的用户价值划分及Spark代码(下) (21:38)
6-8 使用Spark-ml实现基于Kmeans的用户消费分群 (26:16)
6-9 通过订单数据挖掘用户的的行为属性及Spark代码(上) (15:42)
6-10 通过订单数据挖掘用户的的行为属性及Spark代码(下) (08:19)
6-11 DMP的用户分群 (09:38)
6-12 【知识点梳理】本章重难点总结
第7章 用户画像搭建之DMP人群管理
7-1 本章重点及学习计划 (01:33)
7-2 通过不同算法给用户打上标签后的业务应用 (04:38)
7-3 ES,ClickHouse导入万级人群标签数据 (17:18)
7-4 Mysql导入标签数据 (06:18)
7-5 DMP的标签管理 (12:53)
7-6 DMP生成人群包数据 (19:16)
7-7 人群组合和人群去重 (22:56)
7-8 lookalike的主要算法 (04:14)
7-9 ClickHouse和ES在人群圈选上的对比 (05:40)
7-10 ClickHouse集成Bitmap (10:50)
7-11 基于宽表的ClickHouse人群圈选 (04:40)
7-12 将Hive数据导入到ClickHouse (10:33)
7-13 将Hive数据转换为ClickHouse的Bitmap (11:33)
7-14 基于Bitmap的ClickHouse人群圈选 (16:05)
7-15 本章知识点梳理
第8章 项目展示及版本升级解决方案
8-1 项目完整演示(上) (14:55)
8-2 项目完整演示(下) (12:51)
8-3 Spark模块本地运行完整演示 (05:58)
8-4 Spark模块集群运行完整演示(上) (16:56)
8-5 Spark模块集群运行完整演示(下) (14:27)
8-6 版本升级解决方案 (04:14)
8-7 课程总结 (20:05)

网盘截图:

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。